
F. R.  A H M E D ,  D. W. J. C R U I C K S H A N K ,  A. C. L A R S O N  A N D  J. M. S T E W A R T  393 

Precision of the numerical values 
The quantities calculated, the crystallographic 

program systems which produced them, and the 
precision referred to the least significant digit quoted 
in each case, are as follows: 

Quantities Program systems Precision 
V,a*,b*,c*,ct*,fl*,~,*, V* XRAY, NRC +0 
sin 0/2 XRAY, NRC, LASL + 1 
Interpolated f-values XRAY, NRC, LASL + 3 
Fc, Ac, Bc XRAY, NRC, LASL _+ 7 
Y IFol XRAY, NRC, LASL _0 
Y, IFcl XRAY, NRC, LASL + 18 
7. IAFI XRAY, NRC, LASL _+ 6 
R XRAY, NRC, LASL _+ 1 
~w(AF)Z XRAY, NRC _ 1 
Interatomic distances XRAY, NRC, LASL +_ 0 
E.s.d.'s of distances XRAY, NRC, LASL _+ 5 
Valence angles XRAY, NRC, LASL _+ 1 
E.s.d.'s of angles XRAY, NRC, LASL ___ 17 
Electron densities XRAY, NRC, LASL +_ 1 
Least-squares matrices XRAY, NRC, LASL _+ 15 
Inverse matrices NRC - 
L.S. shifts and e.s.d.'s 

(a) full matrix XRAY, LASL + 15 
(b) 9 x 9 block-diagonal XRAY, NRC + 2 
(c) 3 x 3 a n d 6 x 6  

block-diagonal NRC - 
(d) 4 x 4 a n d 5 x 5  

block-diagonal XRAY, NRC _+ 5 
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Using calculated values of the cosine invariants and the concept of orthogonal classes of phases, a pro- 
cedure for decisive enantiomorph selection is described. The method, which is strongly dependent on a 
study of invariants of special type, facilitates the evaluation of an initial set of phases and provides a 
broad base for subsequent phase extension by one of the tangent techniques. Three applications of this 
new procedure are cited. 

1. Introduction 

I f  a structure invariant  L has the value s for a crystal 
structure S then the value of the same structure in- 
variant  for the enant iomorphous  structure S'  is - s  
(Haup tman  & Karle,  1956). Thus if  s=O or n then L 

has the same value (0 or n) for both enant iomorphs  
and is not  suitable for enant iomorph discrimination.  
If, on the other hand,  s ¢ 0 or n then, since the magni-  
tude of  s (or, equivalently, cos s) is determined by the 
known magnitudes of  the structure factors, the en- 
an t iomorph  may  be chosen by specifying arbitrari ly 
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the sign of s. This observation forms the basis for 
enantiomorph selection in crystal structure determina- 
tion by direct methods. 

In practice one attempts to employ a structure in- 
variant L whose value is approximately equal to 
+ n/2 in order to insure strong enantiomorph discri- 

mination. Even so, for complex structures, a single 
structure invariant constitutes a very narrow foun- 
dation on which to base a technique for phase deter- 
mination. For this reason one has often found, in 
practice, that enantiomorph specification has not been 
decisively made and has led to an initial E map which 
contains fragments of both enantiomorphs and pres- 
ents great difficulties of interpretation. In the present 
paper a technique for enantiomorph specification is 
described which employs, instead of just a single 
invariant, a class of several structure invariants, each 
member of which approximately equals + z~/2. In this 
way the base of the phase determination process is 
considerably broadened with resultant unambiguous 
enantiomorph discrimination. 

Only the space group P2~ is considered here but the 
same technique may be used in most of the other non- 
centrosymmetric space groups. It is assumed finally 
that the values of the cosine invariants, COS(~0h+~0U 
+~0-h-k), where ~0 is the phase of the normalized 
structure factor E, have been calculated from known 
magnitudes [EI, at least approximately, by methods 
recently described (Hauptman, Fisher, Hancock & 
Norton, 1969; Hauptman, 1970; Hauptman, Fisher & 
Weeks, 1971). 

2. Motivation 

If the integer k is fixed, then, as h and l range over 
those integers for which the normalized structure factor 
magnitudes, IE.~,I. are large, it is known that the cor- 
responding phases ~0~ will, in general (provided that 
IEo2.ol is not too large), take on values distributed 
over the range 0 to 2re. If the origin is fixed so that 
~0o2,0=0 (which may always be done in P20,  then 
some of the (Ph,{S are expected to have values in the 
neighborhood of 0 or n and others in the neighborhood 
of + re/2. In view of the relationship 

~o~ =~0h~, if k is even, (2.1) 
o r  

~0~ = ~ + rph~, if k is odd,  (2.2) 

it follows that, if k is even 

COS (q)l, kl "31- ~ ]  -1- ~0 2k0) = COS 2~0h~ t (2.3) 

_~ _+ 1 (2.4) 
according as 

fPh~ _ 0  or z~ (2.5) 
or 

fPh~ ~ + z~/2 (2"6) 

respectively. If, on the other hand, k is odd, then 

COS (~hlcl "JV ~ "31- ~0 0 2k 0) ~" - -  COS 2f&~t (2'7) 

according as 

o r  

___gl (2.8) 

~0hr, t ~ 0 or zc (2.9) 

~0h~z--~ + Z~/2 (2"10) 

respectively. In other words the special cosine in- 
variants (2-3), (2.7), by doubling the phase ~0hkz, exag- 
gerate, for fixed k, the deviations in the values of the 
q)hkZ. Thus, differences of re/2 among the ~Ohkt (permitting 
strong enantiomorph discrimination) imply, via (2.3)- 
(2.10), that the values of some cosine invariants are 
approximately - 1  so that the identification of these 
cosines, by means of their calculated values, is feasible. 
This observation is the motivation for the method of 
strong enantiomorph discrimination which is described 
here, and already clearly shows the strong dependence 
of the method on the calculated cosine invariants, in 
particular those calculated to be negative. (It should be 
noted that lEo 2k 01 must not be too large; otherwise, as 
the probability distribution of cosine invariants shows 
(Cochran, 1955; Hauptman, Fisher, Hancock & Nor- 
ton, 1969), the values of most of the cosines (2.3) or 
(2.7) will be approximately unity, and the possibility 
of constructing two 'orthogonal' classes of phases as 
described in the sequel is greatly reduced.) 

3. Analysis 

In accordance with section 2, the basic idea is to find an 
integer k and two ('orthogonal') classes, I and II, of 
phases ~ohk z having the properties: 

1. lEo 2k 01 is moderately large (say _~ 2); 
2. every I Eh~,l corresponding to any phase ~0hkt in 

Class I or II is large (say > 1); 
3. any two phases in Class I differ from each other 

by 0 or ~z, approximately; 
4. any two phases in Class II differ from each other by 

0 or ~, approximately; 
5. any phase in Class I differs from any phase in 

Class II by ~/2 approximately. 

It will be seen in the sequel that while it is highly 
desirable to have Property 1, this requirement may not 
be essential. 

In order to identify two classes, I and II, with the 
stated properties, determine first an integer k such that 
IEo2k01 is large. Place tentatively in Class I those 
phases ~0hl, z for which the I&ul are large (so that 
Property 2 is satisfied) and the calculated values of 
the cosine invariants cos (fp~ + ~0~r + ~0o2k0) are large: 

cos (cp~ + ~o~i + ~0o 2k o) - + 1. (3.1) 
Then 

2~0hkl -- ~00 2k 0 or zc + ~002k o (3"2) 

according as k is even or odd. Hence 

~0nkz ~ ½(P02k 0 or ½(Po 2k 0 + n if k is even, (3-3) 
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q~nk, ~ ½q~02~ 0 + Zr/2 if k is odd,  (3"4) 

and in either case Property 3 is presumably satisfied for 
these members of Class I ['presumably' because cal- 
culated cosines (3.1) are subject to some error]. In 
order to insure that Property 3 hold with at most 
minor exception for the elements of Class I, retain only 
those phases (P~k, which 'interact' strongly with one or 
several others, 9h'k~', i.e. those 9hk, such that at least 
one of 

A =  0 2 .  IEh,,,Eh,k,,Eh±~,.o.,±,,[ (3.5) 

is large and for which calculated cosine invariants 
satisfy at least one of 

cos (~0akr + ~0~,ii, +~0h+h,. 0. ,+ , , )= + 1, (3"6) 

cos (q)~kZ+gh'~Z' +gh-h',  0. ~- , ' )=  + 1. (3.7) 

It is clear from (3.6) and (3.7) that in this case, since 
~0h±,,,. 0, ~±t,=0 or re, only those phases will be retained 
in Class I for which Property 3 must almost surely hold. 

Next, Class II consists tentatively of those phases 
~0hk, for which the IEhkzl are large (so that Property 2 is 
satisfied) and the calculated values of the cosine in- 
variants cos (~0,i , + ~0~i~ + q)02k 0) are small" 

cos (~0hi, + 9~ir + ~°o 2k 0) -~ - 1 . (3"8) 
Then 

2~Ohk, ~ ZC + ~0o 2~ o or ~002k 0 (3"9) 

according as k is even or odd. Hence 

zc 
~0hk~-----½~0o 2ko + ~ if k is even, (3.10) 

1 ~Ohk,~--½~OO2kO or ~(002k0+~r i fk  is odd,  (3"11) 

and, in either case, Property 4 is presumably satisfied 
for these members of Class II. As before, in order to 
insure that Property 4 holds with negligible exception, 
retain only those phases ~0~k, in Class II with interact 
strongly with one another in the sense defined earlier. 

Next, if k is even, compare (3.3) with (3.10) in order 
to verify that Property 5 holds. If k is odd, compare 
(3.4) and (3-11). 

In order to secure Property 5 with at most minor 
exceptions, only those phases are retained such that no 
phase in Class II interacts strongly with any phase in 
Class I, i.e. if ~gnik, i is in Class I and {Oh2k, 2 is in Class II 
then either 

2 
A =  ~ [Eh~k,~ Eh2kt 2 Eh2±h2, 0. t2±,2l~---O (3'12) 

or, if A of (3.12) is large, then calculated cosine in- 
variants satisfy 

cos (~%~a+~0~2~,2+~0_n~_~2.0. -,~-,2) -~0 (3.13) 
o r  

cos (~0n~k,x + ~0~2~ h + ~0_ n~ + h2. o, - ~ + ,2) -~ 0 .  (3" 14) 

Clearly, (3.12)-(3.14) are consistent with the previously 

derived 

zc (3.15) (%ktl + ~0hV~t2+ (P-hi-h2.0, -Z2- t2 ~- + 2- 

and 

{OhlkllAf-q)h2k72"q-~9-hl+h2'O' -I1+12~-~ 2 (3"16) 

for all phases ~Ohlka in Class I and for all phases {Oh2kl 2 
in Class II, i.e. Property 5. 

Since each structure invariant (3.15) or (3.16) is 
approximately + re/2, it is clear that the class consisting 
of all of them constitutes a collection of structure in- 
variants each approximately + z~/2 and therefore ap- 
propriate for decisive enantiomorph discrimination. 
Clearly too, owing to the built-in redundancy in 
defining Classes I and II, a modified procedure sug- 
gests itself. Thus Property 1, while highly desirable, 
may possibly be dispensed with and only the notions 
of strongly and weakly interacting classes of phases 
employed. It should, however, be emphasized that in 
the three applications of this method actually made 
thus far, Property 1 has in fact been satisfied. In any 
event the method is strongly dependent on the ability 
to calculate cosine invariants, at least approximately, 
and, in view of (3.8), (3.13), (3.14), the identity of the 
small or negative cosines is seen to be of crucial 
importance. 

Once the values of an initial set of phases have been 
obtained, via origin fixation and the method of strong 
enantiomorph selection as described here, then the 
usual tangent techniques (e.g. Katie & Hauptman, 
1956) are used to expand this basic set. 

4. Applications 

The technique for strong enantiomorph selection de- 
scribed in this paper has been integrated into the 
previously secured direct methods for determination of 
initial phases (Hauptman, Fisher, Hancock & Norton, 
1969; Hauptman, 1970; Hauptman, Fisher & Weeks, 
1971; Duax, Weeks & Hauptman, 1972) and used to 
solve the following structures in space group P21: 
17fl-acetoxy-2,4-dioxa-3-thia-5c~-androstan-3-one 
(C21OsSH2a), the aldosterone-water complex 
(C2~OsH28. HzO), and valinomycin (Cs4N6Olsngo). 
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